Glonass Logo

What is GLONASS And How It Is Different From GPS

GLONASS is an acronym, which stands for Globalnaya Navigazionnaya Sputnikovaya Sistema, or Global Navigation Satellite System. GLONASS is Russia’s version of GPS (Global Positioning System).

Who built GLONASS?

Soviet Union started the development of GLONASS in 1976. GLONASS is the most expensive program of the Russian Federal Space Agency, consuming a third of its budget in 2010.

what is glonass in mobile


The various versions of GLONASS are

  1. GLONASS – launched in 1982, the satellites launched were intended to work for weather positioning, velocity measuring and timing anywhere in the world or near-Earth space by the military and official organisations.
  2. GLONASS-M – launched in 2003 add second civil code. It is important for GIS mapping receivers.
  3. GLONASS-k – started in 2011 again has 3 more types namely k1, k2 and km for research. Adds third civil frequency.
  4. GLONASS-K2 – will be launched after 2015 (currently in design phase)
  5. GLONASS-KM – will be launched after 2025 (currently in research phase)

What is A-GLONASS?

A-GLONASS, Assisted GLONASS is very similar to GLONASS but A-GLONASS brings more features for smartphones. It brings features such as turn by turn navigation, real time traffic data and more. It uses the cell towers near your location to lock your location quickly with the help from your data connection. A-GLONASS also enhances the performance in chip-sets that come with GLONASS support.

How much did GLONASS cost?

Up to 2011 the Russian government spent about 5 billion dollars on GLONASS project, and further invested 320 billion rubles ($10 billion) for the period of 2012 to 2020. GLONASS happens to be the most expensive project ever by Russian Federal space Agency.

How is GLONASS different from GPS?

GPS developed by USA has a network of 31 satellites covering this planet and has been widely used in commercial devices like mobile phones, navigators etc.

GLONASS is developed by Russia originally started by Soviet Union in 1976. This has a network of 24 satellites covering the earth.

The image shows the orbit and constellation of GLONASS (left) and GPS (right).

The image shows the orbit and constellation of GLONASS (left) and GPS (right).

Here is a table of specs comparing GPS vs GLONASS

OwnerRussian FederationUnited States
Number of
At-least 2431
Orbital Height21150 Km19130 km
AccuracyPosition: 5–10 mPosition: 3.5-7.8 m
Orbital plane inclination64.8 degree55 degree
Orbital period11 hours and 16 minutes11 hours and 58 minutes
FrequencyAround 1.602 GHz (SP)
Around 1.246 GHz (SP)
1.57542 GHz (L1 signal)
1.2276 GHz (L2 signal)
StatusOperational Operational

Advantage of GLONASS over GPS (GLONASS Vs GPS)

There is no clear advantage other than accuracy over GPS. When used alone GLONASS doesn’t have that strong coverage as GPS has, but when both used together certainly increases accuracy with coverage. And it is more useful in northern latitudes as Russia started GLONASS originally for Russia.

The accuracy is an advantage of GLONASS with up-to 2 meter of accuracy. GPS + GLONASS allows your device to be pin pointed by a group of 55 satellites all across the globe. So when you are in a place where GPS signals are stuck like between huge buildings or subways, you will be tracked by GLONASS satellites accurately.

Commercial Use of GLONASS

GLONASS was first commercially used in car navigator as Glospace SGK-70 but was bulky and expensive.  Russian government is trying hard to promote GLONASS commercially.

Commercial Use of GLONASS

iPhone 4S was the first apple product to use both GPS and GLONASS for pinpointing location on maps.

All the high end devices that supports GPS facilities, especially navigators include GLONASS receivers on their chip to use location based services.

What is offered for smartphones?

 smartphones glonass

Today any mobile phone whether it is a high end or a low budget smartphone is equipped with A-GPS (assisted Global Positional System) which uses network capabilities to find your location.

Now with GLONASS being offered for public services, more and more smartphones are being launched with GPS+GLONASS technology to use dual core location based service to find location. Initially only Flagship or high end smartphones boasts these features but as time will progress, we will see both these technologies being equipped on low and mid-range smartphones. More and more companies and chip manufacturers seem to be interested in GLONASS technology, so more and more smartphones are expected to be launched with this technology.

List of Smartphones supporting GLONASS

Smartphone Manufacturer Mobile Phone Model
AcerAcer Liquid S2
AlcatelAlcatel OT-995
AppleiPhone 4S
AppleiPhone 5
AppleiPhone 5C
AppleiPhone 5S
AsusPadFone 2
AsusPadFone Infinity
AsusASUS MeMO Pad FHD 10 ME302C
AsusASUS MeMO Pad 10 ME102A
AsusASUS MeMO Pad 7 ME176C
AsusASUS Fonepad 7 ME372CG
AsusASUS Fonepad 7 ME175CG
BlackBerryBlackBerry Z10
BlackBerryBlackBerry Q10
HTCHTC Butterfly
HTCHTC Butterfly S
HTCHTC Desire 600
HTCHTC One Mini 2
HTCHTC Windows Phone 8S
HTCHTC Windows Phone 8X
HuaweiHuawei Ascend D1 Quad XL
HuaweiHuawei Ascend G600
HuaweiHuawei Ascend G615
HuaweiHuawei Ascend Mate
HuaweiHuawei Ascend P2
HuaweiHuawei Ascend P6
HuaweiHuawei Honor (U8860)
HuaweiHuawei Honor 2
LGLG Nexus 4
LGLG Nexus 5
LGLG Optimus G
LGLG G2 mini
LGLG Optimus G Pro
LGLG Optimus Sol
LGLG Venice
LGLG Optimus L9
LGLG Optimus L9II
MeizuMeizu MX2
MotorolaMotorola Atrix HD
MotorolaMotorola Moto E
MotorolaMotorola RAZR
MotorolaMotorola MOTO G
MotorolaMotorola MOTO X
MotorolaMotorola RAZR HD
MotorolaMotorola RAZR M
MotorolaMotorola RAZR MAXX
MotorolaMotorola DROID 4
MotorolaMotorola DROID RAZR
MotorolaMotorola DROID RAZR HD
MotorolaMotorola DROID RAZR M
MotorolaMotorola DROID RAZR MAXX
MotorolaMotorola DROID RAZR MAXX HD
NokiaNokia Lumia 520
NokiaNokia Lumia 525
NokiaNokia Lumia 620
NokiaNokia Lumia 625
NokiaNokia Lumia 710
NokiaNokia Lumia 720
NokiaNokia Lumia 800
NokiaNokia Lumia 820
NokiaNokia Lumia 822
NokiaNokia Lumia 900
NokiaNokia Lumia 920
NokiaNokia Lumia 925
NokiaNokia Lumia 928
NokiaNokia Lumia 1020
NokiaNokia Lumia 1520
SamsungSamsung Galaxy S Duos 2
SamsungSamsung Galaxy Ace 2
SamsungSamsung Galaxy Ace 3
SamsungSamsung G350 Galaxy Core Plus
SamsungSamsung Ativ S
SamsungSamsung Galaxy Chat
SamsungSamsung Galaxy Exhilarate
SamsungSamsung Galaxy Express
SamsungSamsung G3815 Galaxy Express 2
SamsungSamsung Galaxy Grand
SamsungSamsung Galaxy Grand 2
SamsungSamsung Galaxy Mega
SamsungSamsung Galaxy Music
SamsungSamsung Galaxy Note
SamsungSamsung Galaxy Note II
SamsungSamsung Galaxy Note III
SamsungSamsung Galaxy Pocket
SamsungSamsung Galaxy Pocket Neo
SamsungSamsung Galaxy Fame
SamsungSamsung Galaxy S II Plus
SamsungSamsung S7582 Galaxy S Duos 2
SamsungSamsung Galaxy S III
SamsungSamsung Galaxy S III Mini
SamsungSamsung Galaxy S IV
SamsungSamsung Galaxy S IV Active
SamsungSamsung Galaxy S IV duos++
SamsungSamsung Galaxy S V
SamsungSamsung Galaxy S Relay 4G
SamsungSamsung Galaxy Xcover 2
SamsungSamsung Galaxy Win GT-I8552
SamsungSamsung Omnia W
SamsungSamsung S8600 Wave III
SamsungSamsung Focus
SamsungSamsung Galaxy Trend 7392
SamsungSamsung S7580 Galaxy Trend Plus
SamsungSamsung z
Sony EricssonSony Ericsson Xperia active
Sony EricssonSony Ericsson Xperia arc
Sony EricssonSony Ericsson Xperia arc S
Sony EricssonSony Ericsson Xperia neo
Sony EricssonSony Ericsson Xperia neo V
Sony EricssonSony Ericsson Xperia pro
Sony EricssonSony Ericsson Xperia ray
Sony EricssonSony Ericsson Xperia acro hd
StarmobileStarmobile Navi
SonySony Xperia acro HD
SonySony Xperia acro S
SonySony Xperia AX
SonySony Xperia ion
SonySony Xperia neo L
SonySony Xperia S
SonySony Xperia SL
SonySony Xperia SP
SonySony Xperia SX
SonySony Xperia T
SonySony Xperia TL
SonySony Xperia TX
SonySony Xperia V
SonySony Xperia VL
SonySony Xperia Z
SonySony Xperia Z Ultra
SonySony Xperia ZL
SonySony Xperia ZR
SonySony Xperia Z1
SonySony Xperia Z2
XiaomiXiaomi Phone 2
XiaomiXiaomi Phone 2A
XiaomiXiaomi Phone 2S
XiaomiXiaomi Phone 3

How Google Maps makes use of GLONASS and GPS?

Google Maps and the other mapping apps like Nokia’s HERE Maps and Apple Maps use the data connection to connect to the satellites of GLONASS and GPS. The modern day smartphones come with A-GPS and A-GLONASS support, which brings features such as turn by turn navigation, location tracking and real time location info.

What’s next after GLONASS and GPS?

What’s next after GLONASS and GPS? Is this the end?

  • European Union is currently working on a system called GALILEO which provides highly accurate global positioning service under civilian control. Galileo system consists of 30 satellites (27 operational + 3 active spares), positioned in three circular Medium Earth Orbit planes at 23 222 km altitude above the Earth, and at an inclination of the orbital planes of 56 degrees to the equator.
  • China is developing its own constellation of 35 satellites called BeiDou Navigation Satellite System and is under construction since January 2015. It will offer more capabilities than current GPS. It is currently operational in China and Asia pacific region with 11 satellites in use, will be globally available by 2020.
  • IRNSS or Indian Regional Navigation Satellite System is autonomous satellite system being developed by ISRO (Indian Space Research Organisation) and will offer public service and restricted service (authorized users like military). This system would consist constellation of 7 satellites out of which 4 are already placed in the orbit. The project is expected to be operational by 2016.

If you have something to say, feel free to leave a comment below the article.

Image Courtesy: Wikipedia


  1. What I just read is scary! First off the “Evil Empire” as Ronald Reagan put it, never gives ANYTHING for free. What about GLONASS? Well, to see where this may be headed, you first off need to understand how the GPS system works. The GPs satellite does not tell you where you are. It sends a signal to all GPS receivers telling them where IT is. Your receiver then takes that info along with info from the other GPS satellites it is in line of site with and, through a procedure called triangulation, your receiver determines its’ location on earth. I have somewhat simplified the process but the operative situation here is that your receiver is “receiving a signal” from the GPS satellites. If GPS receivers are also set up to receive a signal from GLONASS it would be simple to add a jamming capability to GLONASS that could simultaneously render essentially, the entire US without communication or navigation. That’s what’s scary and that is why I would not use or have GLONASS,,,,EVER!

  2. I have a samsung j2. It isn’t on list. However, somehow my phone was”find my android device” twice at 4:20am. And I didn’t do it. Canu help please?

  3. my lumia 820 has an ofline map which is live and most accurate and works without internet connection, but my new redmi note 4 cant work ofline, it requited internet, with internet it cant give perfect location. whats the reason ?

    1. For android devices, you can download Here WeGo, It has offline maps capability, as long as your phone has satellite GPS functionality it will be able to track your location when out of range of cell towers. Some phones, mostly older ones, only use cell towers for GPS, for phones that only use cell towers for GPS your phone must be able to reach at least 3 towers to find your location.

  4. I believe all the 3 (GPS, Glonass or Beidou) will be useful based on the demand and geography!

  5. Most of us are concerned about our smartphones’ accuracy & abilities for location & navigation. People should know that in addition to GPS-type satellite information (that requires only a decent radio “view” of the sky), our phones build in additional triangulation from known wifi locations, cell towers and its onboard gyros & magnetometers.

    GPS only needs the ability to receive a signal, and so doesn’t use much battery. That’s why it can be in a titbit-type device with tiny batteries lasting days. Other location information—and especially, updated local maps—require your phone to ask a service provider for the relevant data. It’s too much, and changes enough with new landmarks, road changes etc. to store locally

  6. with so many devices up in space glonass / gps etc ? but nobody was able to track down the missing airliner ?

    1. Of course not. The aircraft without doubt had the required GPS and perhaps also GLONAS and some of the others installed. But right from the early days it was reported that somebody had switched off power to sucsh navigation systems. Therefore, such systems were unavailable to track the airliner. It now looks like it will never be found. SAD INDEED!

  7. How do the positioning systems provide turn-by-turn navigation. I always thought the positioning systems provide a device’s position in longitude and latitude to a maps software which then calculates turn-by-turn navigation. Is anyone able to explain?

    1. Turn by Turn navigation is provided not only by the use of GPS or Glonass. Its a combination of other sensors. For example a magnetometer provides north south east west heading. Accelerometer and Gyroscope provides directional and rotational acceleration. A combination of these sensors and a lot of filtering and algorithms are used to calculate the position as accurately as possible.

    2. It sounds like hype. It looks like an identical system to GPS, except that Russia does not have to rely on the USA for it, and maybe you can get a bit better coverage and accuracy by using both.

      You are correct that GPS only reports position and the map software does the rest. Other sensors are not necessary to compute turn by turn directions. Frequent GPS sampling will give heading (course actually, but it’s hopefully the same for a car), speed and angular rate of change in course for turns. The software on the device or on the server that the device is communicating via cell towers figures out the rest.

      1. Any halfway-smart system designer will get a host of inputs with different types of errors so they can correct against each other.

        Gyroscopes and magnetometers all provide much quicker indications of changes in direction and short-term speed than relying on the satellites’ positioning info, which are fine for higher-speed, straight-line use—like a car on a highway—but their uncertainty area can’t detect that you walked around the corner until you’ve gone a ways in that direction.

  8. Well copied from Wikipedia.. Its like making notes from a book for exams..Comparison image content of GLONASS and GPS is not even visible.

    1. At least he sumerizd this technologies properly and we can get all the information in one place …

  9. Very helpful article. One question though: Can devices equipped with GPS/GLONASS receivers provide navigation *without* a cell phone or WiFi connection? Thank-you.

  10. So, when SpaceX has launched all its 700 micro-satelites providing blanket low earth orbit wifi coverage of the planet, will these be any use for navigation (from a positioning POV)?

    1. Not unless they know where they are and have atomic clocks on board. My understanding is that the micro-satellites you are talking about will not be in geosynchronous orbit, so they will have to know where they are and the most logical way they might know that is from the GPS satellites.

  11. The picture shows GLONASS to be at a lower altitude than GPS, yet the table shows Orbital Height of 21150 Km for GLONASS, and 19130 km for GPS. Where is the error? Or am I reading something incorrectly?

    1. Unless the picture changed the picture shows GLONASS as clearly higher than GPS. It’s not vague or close.

  12. What if all these countries worked together?? Wouldn’t the resulting system be incredible… just sayin’

    1. Mr Mark… What if they all worked together ? They do.

      Modern receivers can receive GLONASS/GPS/Galileo so they do work together.
      The more satellites you have , the greater the accuracy.

      And a note to the author. Please use articles. It’s not “Soviet union did X. European Union did Y” they are THE soviet union and THE European union. It’s a small thing, but it makes your article read so much better if you use them.

  13. Thank you very much for providing this information, your working so appreciable on this article. Thanks again bro.

  14. If all countries worked together to share all navigational and construction positioning satellites, what would be the optimum number?

    1. That would be dependent upon how accurate you want the positioning to be. Current systems are accurate to within 2M generally, and 0.5M with a higher satellite count. To get more accurate than that, the number of satellites would have to become exponentially greater. This is almost always the case, no matter what type of system you are using. For instance, to double the range of a radio signal, you need 4 times the power. With satellites, you’re also dealing with atmospheric anomalies, extra solar radiation, and other factors, so it isn’t as cut and dried as you might think.

Leave a Reply